

How does it happen?

The answer: Cell Division

How does it happen?

Once a female egg is fertilized, cell division (through mitosis) creates many identical cells. The cells continue to divide, creating a blastocyst of cells. At this point, a key process (known as differentiation) takes place and the cells begin to become "specialized."

Cell Differentiation

- During development, the cells of multicellular organisms lack specialized functions- <u>stem cells</u>
 - These cells
 differentiate develop into
 cells with a
 specialized
 function.
 Ex. Muscle cell

We will soon be talking more about the potential of stem cells.

Cell Differentiation

A Cell's Life Span

- After cells differentiate, they have unique life spans.
- For example:
 - Skin cells: 2 weeks
 - Red blood cells: 4 months
 - Liver cells: 300-500 days
 - Neurons: often do not divide
- The shorter the lifespan of the cell, the more frequently it must be replaced by cell division.

Why do cells divide?

- Cells divide for different reasons:
 - In <u>multicellular organisms</u>
 - Growth
 - Repair

happens before & after differentiation

- In <u>unicellular organisms</u>
 - Asexual Reproduction
 - Asexual reproduction of bacteria- <u>binary fission</u>

The Cell Cycle

- <u>Cell cycle</u>: a repeated pattern of growth, DNA duplication, and cell division that occurs in eukaryotic cells (plants, animals, fungi, and protists)
- 3 phases
 - Interphase- (cell growth)
 - Mitosis- (cell division)
 - Cytokinesis-(cytoplasm separation)

Interphase

- The growth phase
- 90% of a cell's life is spent in interphase
- 3 stages within interphase:
 - G1 (Gap 1)
 - S (Synthesis)
 - G2 (Gap 2)

Gap 1 Phase

1st part of interphase

- Cells
 - Carry out functions
 - Grows & makes proteins

Synthesis Phase

2nd part of interphase

- Cells
 - Undergo DNA replication (make a copy of DNA)

Gap 2 Phase

3rd Part of Interphase

- Cells
 - More growth
 - Protein synthesis
 - Prepare for division (enough organelles)

***At the end of interphase, the cell has 2 full sets of chromosomes.

Mitotic Phase- Division

Mitosis & Cytokinesis

- Cells
 - Divide nucleus (mitosis)
 - Divide cytoplasm (cytokinesis)

Result= 2 identical daughter cells

We will go into more detail about the stages of mitosis.

 During interphase, DNA is in a loose form called chromatin

• Chromatin- a loose form of DNA

Also with some proteins

- During prophase, the DNA condenses from chromatin into chromosomes.
- Chromosome- a highly condensed (packed) form of DNA
 - The DNA is wrapped up with special proteins
 - Easier to move DNA as chromosomes to avoid damage

Chromosome Chromatid Chromatid Nucleus Telomere Centromere Telomere Cell DNA(double helix)

Relationship between DNA, chromatin and chromosomes

Base Pairs

- **Duplicated chromosome** a chromosome that consists of two sister chromatids
 - DNA was duplicated during S phase of interphase
 - The two chromatids contain the same genetic information
- Sister chromatids- two halves of a chromosome that have the same genetic information
 - Become chromosomes when they separate

Duplicated chromosome

Sister chromatids

• Centromere- connects two sister chromatids

 Centrosome- organelles that make structural proteins (microtubules) such as spindle fibers

Made of two centrioles (may see centrosome or

• **Spindle fibers**- special proteins that move chromosomes during mitosis

Practice Sister chromatids Centrosome (Centrioles) Duplicated chromosome Spindle Fibers Centromere

Prophase

- The membrane around the nucleus disintegrates.
- The chromosomes condense and become sister chromatids.
- The centrosomes migrate to opposite poles of the cell.
- Spindle fibers emerge from the centrosomes.

Metaphase

 Sister chromatids move toward the middle of the cell on a line called the metaphase plate.

 Centrosomes send out thread-like projections called spindle fibers that attach to the centromere of each

sister chromatid.

Anaphase

 Centrosomes start pulling on the spindle fibers to pull the sister chromatids apart (at this point, they are now called chromosomes).

Early anaphase

Late anaphase

Telophase

• The nuclear membrane forms around each new set of chromosomes.

Cytokinesis

- The cell membrane pinches in until the two daughter cells separate.
- At this point, both daughter cells can enter the cell cycle once more.

Cytokinesis (Plant Cells vs. Animal Cells)

End result?

2 IDENTICAL DAUGHTER CELLS

Meet Stelle

Stella the starfish has an amazing adaptation!
When threatened by a predator, Stella can detach her arms!

But wait.....

What will happen to Stella's remaining limb?

Take a minute to research "starfish limb regeneration" to find out what will happen to Stella.

Video about limb regeneration: https://youtu.be/byLDgtSMIOw